Cinco
ejercicios de series finitas (ó parciales)
Carlos
Torres Miranda
Facultad
de Ciencias
Estudiante
de Grado de Matemáticas de la UNED
Cinco
series matemáticas finitas
Five
finite matematical series
Calcular las siguientes series matemáticas:
1.-
i=n
∑ i
. ( i – 1 )
i=1
= [ n . ( n + 1 ) . ( 2 . n + 1 ) ] / 6 - [ ( 1 + n )
. n ) / 2
=
[ 2 . n3
+ 3 . n2 + n – 3 . n – 3 . n2 ] / 6
=
[ 2 . n3 - 2 . n ] / 6
=
[ n . ( n + 1 ) . ( n – 1 ) ] /3
= n
. ( n + 1 ) . ( n – 1 )
3
i
= +1
∏ [
n + i ]
= i
= -1
3
2.-
i
= n
∑ [
i . [ n – ( i – 1 ) ]
i = 1
= 1 . n + 2
. ( n – 1 ) + 3 . ( n – 2 ) +....+ ( n – 2 ) . 3 + ( n – 1 )
. 2 + n . 1
i
= n i = n
=
∑ ( i . n ) – ∑ [ i . ( i – 1 ) ]
i = 1 i = 1
i
= n
=
[ ( 1 + n ) / 2 ] . n 2 – ∑ { i . ( i – 1 ) ]
i
= 2
i
= n – 1
=
[ ( 1 + n ) / 2 ] . n 2 – ∑ [ i . ( i + 1 ) ]
i
= 1
i = n
– 1
= n 2
. [ ( n + 1 ) / 2 ] – { [ 1 + ( n – 1 ) ] . (n – 1 ) / 2 } –
∑ i 2
i = 1
i
= n – 1
=
n 2 . [ ( n + 1 ) / 2 ] – [ ( n 2 – n ) / 2
] – ∑ i 2
i
= 1
i
= n – 1
=
( n 3 + n 2 – n 2 + n ) / 2 –
∑ i 2
i = 1
=
( n 3 + n ) / 2 – { [ n . ( n + 1 ) . ( 2 . n + 1 )] /
6 – n 2 }
=
{ 3 . n 3 + 3 . n + 6 . n 2 – ( n
2 + n ) . ( 2 . n + 1 ) } /6
=
( 3 . n 3 + 3 . n + 6 . n 2 – 2 . n 3
– 2 . n 2 – n 2 – n ) / 6
=
( n 3 + 3 . n 2 + 2 . n ) / 6
=
[ n . ( n 2 + 3 . n + 2 ) ] / 6
=
[ n . ( n + 1 ) . ( n + 2 ) ] / 6
i =
2
∏ [
n + i ]
= i
= 0
6
= (
n + 2 ) !
(
n – 1 ) ! . 3
!
(
n + 2 ) !
= (
( n + 2 ) – ( n – 1 ) ) ! . ( n – 1 ) !
( n + 2 )
( n + 2 )
=
(
)
(
n – 1 )
(
n + 2 )
=
C( n – 1 ) ,
poniéndolo como las combinaciones sin repetición de ( n + 2 )
elementos
tomados de ( n – 1 ) en ( n – 1 ).
3.-
i
= n
∑ (
n + i ) . ( n - i )
i = 0
i
= n
=
∑ ( n 2 – i 2 )
i = 0
i
= n i = n
=
∑
n 2 – ∑ i 2
i = 0 i = 0
= ( n + 1 )
. n 2 – [ n . ( n + 1 ) . ( 2 . n + 1 ) / 6 – 0 ]
=
n 3
+ n
2
– n . ( 2 . n 2
+ 3 . n + 1 ) / 6
=
( 6 . n 3
+ 6 . n 2
–
2 . n 3
– 3 . n
2 –
n ) / 6
=
n . ( 4 . n
2 +
3
. n – 1 ) / 6
=
4 / 6 . n . ( n + 1 ) . ( n – 1 / 4 )
=
( 1 / 6 ) . n . ( n + 1 ) . ( 4 . n – 1 )
4.-
i
= n
∑ (
n + i ) 2
i = 0
i = n
=
∑ ( n 2 + 2 . n . i + i 2 )
i = 0
= n 2
. ( n + 1 ) + 2 . n . n . ( n + 1 ) / 2 + n . ( n + 1 ) .
( 2 n + 1 ) / 6
= n . ( n + 1 ) . [ n + n + ( 2 . n + 1 ) / 6 ]
= n . ( n + 1 ) . ( 14 . n + 1 )
6
5.-
i
= n
∑ (
n + i ) 3
i = 0
i = n
=
∑ ( n 3 + 3 . n 2 . i + 3 . n . i 2
+ i 3 )
i = 0
i = n i = n i = n i = n
=
∑ n 3 + 3 . n 2 . ∑ i + 3 . n
.∑ i 2 + ∑ i 3
i
= 0 i = 0 i = 0 i = 0
= ( n + 1
) . n 3 + 3 . n 2 . n . ( n + 1 ) / 2 +
3 . n . ( n + 1 ) . ( n + 2 ) . ( 2 . n + 1 ) / 6 +[n . ( n + 1 )/2] 2
=
n . ( n + 1 ) . [ n 2 + 3 . n 2 / 2 + ( 2 . n 2
+ 5 . n + 2 ) / 2 +
( n 2 + n ) / 4 ]
=
n . ( n + 1 ) . ( 4 . n 2 + 6 . n 2 + 4 . n 2
+ 10 . n + 4 + n 2 + n ) / 4
= n . ( n + 1 ) . ( 15 . n 2 + 11 . n +
4 )
4
No hay comentarios:
Publicar un comentario